[image: image1.png]g;n Umversny of

Department of Electrical Engineering and Computer Science

Technical Manual

Senior Design

Robot Controller Interface Software

Group # 3

	Michael Wales
	NeedMoreHP@yahoo.com

	Jeff Miller
	j_miller68@hotmail.com

	Jeff Goodman
	goodmanj@orl.saic.com

Instructor: Dr. T. Kasparis

Spring/Summer 2001

Robot Controller Technical Manual

The robot controller project consists of three main parts: the robot controller, the robot surrogate, and the network. Each of these parts will be described in detail throughout the document. The robot controller, the robot surrogate, and the network are all designed for Red Hat Linux and are all written in C and C++. Throughout the paper each significant class, method, function, and variable from each of the three components of the robot controller program will be explained and the use for each of these will be given. The robot controller and the robot surrogate were designed in GTK+, which is a multi-platform toolkit for creating graphical user interfaces in C. The network was designed using C++.

The robot controller is a GUI that allows the user to move the robot around in a window, speed the robot up, or slow the robot down. The user has the option to click on the GUI, change the speed, and click start or the user can use different keys to move the robot around and change the speed. See RobotController API (provided on this CD) for a full list of commands.

The robot surrogate is a GUI that is connected to the robot controller. The purpose of the robot surrogate is to emulate the actions of the robot. When the robot surrogate is started it is ready to receive commands from the robot controller. The robot surrogate should act exactly like the robot would. It can be used if there is not a robot present to test on or can be used with the robot.

The network was designed in C++ and connects the robot controller with the robot surrogate or the robot. It can also connect a SAF with the robot surrogate or robot. The network sends an ASCII character corresponding to command, an integer telling the receiver the size of the incoming command object, and the robot object. When receiving the network receives the ASCII character corresponding to command, receives an integer corresponding to size of the object, decodes the ASCII character corresponding to command, and prepares to receive the incoming RobotCommand object.

The Robot Controller

The robot controller graphical user interface is designed in C using GTK+. It interfaces to the robot through the network using sockets as described later in this document. For build instructions see the accompanying documentation (provided on this CD).

Description of major operations in main.cpp

This is the main event loop of the program. It setups up the GTK environment and loops constantly.

Description of major operations in Support.cpp

Currently not implemented.

Description of major operations in GUI.cpp

This file contains the functions, which setup the Widgets, which are used in the display. This file is also responsible for setting the signal handlers that the user and the operating system will create. It also defines the hierarchy of the GUI components.

Description of major operations in EventHandlers.cpp

This file contains all the signal handlers that are registered to the components of the GUI. The display is designed so that the robot is always located at the center of the window, and the background moves according to the direction in which it is commanded. This proved to be more difficult than first thought. The scrolling is done through a series of calculations using the angle at which the user has clicked.

1. draw_Grid is called to show a line from the current location (always the center of the screen) to the point which has been clicked.

2. draw_Grid will redraw the background and call several draw_String’s to update status information, and will also call the function plot_Path to actually draw the path which the robot is to take.

3. Once a path has been established and a speed selected, through the faster and slower buttons, or through the keyboard as described in the RobotController API (provided on this CD) the user must then click the start button to set the robot in motion.

4. The controller then proceeds to make a call to the draw_Grid function to display the motion that is about to occur.

5. There is a model for this particular robot built into the RobotAPI (included on this CD) which will give an approximate time for any turn to take place. The controller will wait for this amount of time, then proceed to move the robot in the commanded direction. This wait is accomplished via a check status command. What the controller is actually waiting for is a returned status command from the RobotAPI, which states that it has completed the move to the proper heading. The heading is returned by the RobotAPI through a RobotCommand class and is located in the ValueC field. RobotAPI and RobotCommand are described in the network section of this document.

6. After the robot is turned to the proper direction it is set into motion, by calculating the X component and Y component of the selected speed. This is done through mathematical calculations using the vector specified by the user with a mouse click.

7. While the robot is in motion the point to which it is moving towards must appear like it is moving towards the robot (which is always located at the center of the screen). The function, which handles this, is the modify_Path function.

8. It is also this function with helps the draw_Grid method to determine when to stop animating the movement. When the point which the modify_Path method is trying to draw at is equal to the center point, the draw_Grid method stops animating.

9. The main part of the draw_Grid function is making the background appear to move. This is done by using a checker board, which is drawn to an offscreen buffer (larger than the window size). This buffer is then moved at a ratio in the X and Y directions depending on the values of the X and Y components of speed and drawn to the visible screen. This is a technique called double buffering. Once the end of the buffer is reached it is then reset to start drawing at the edge that it began the current movement from.

Another technical operation, which the graphical user interface performs, is the moving of the robot using the keyboard. For details on the keys which are used see the RobotController API. Due to the fact of no feedback from our robot these commands cannot be animated to onscreen the robot itself.

The class Tester is implemented to handle the network connection. For a detailed description of Tester see the RobotController API. Tester is an interface class between the user GUI and the network. The network operations are completely transparent to the calling program. When sending commands to either a real robot or to a surrogate robot, the controller GUI will call the methods of tester. Tester will then proceed to access the network and transmit this data. If an error is received Tester is notified allowing the GUI to re-send the data or to simply ignore the lost data.

Robot Surrogate

The robot surrogate was designed using the GIMP Tool Kit (also known as GTK). GTK is used to write Graphical User Interfaces in C and C++. Glade was used in the design of the GUI. Glade is a free user interface builder for GTK+ and GNOME. Glade produces C source code from user-defined interfaces. Glade allows the user to create windows and define signals for the GUI being designed. The reason the GUI was written in GTK and not Java, which seems to be a more efficient language to design GUIs, is that the networking had to be in C++ to connect to existing code. No one from the group has experience integrating Java and C++. We decided the integration would potentially cause too much of a problem so we decided to learn a new language and designed the GUIs using GTK.

The robot surrogate was designed to display the robot in a fixed area, display the current x and y coordinates of the robot, and to display the speed of the robot. The speed of the robot, orientation of the robot, and the horizontal distance of the robot’s movement area are all user inputs. The speed and horizontal distance do not have any units but the robot surrogate assumes that the speed is in units/second. For instance, if the user inputs the horizontal distance is 500 and the speed is 5, the robot surrogate assumes that speed is 5 units/second so it would take 100 seconds to go from one end to the other end.

The main purpose of the robot surrogate is to emulate the robot and show the user exactly where the robot is at all times. This was accomplished by calculations and formulas learned in physics. The location of the robot is calculated by using the formula s=so + vot, where s is the new position, so is the previous position of the robot, vo is the velocity or speed of the robot, and t is the amount of time between calculations. The time between calculations, t, is a fixed number and is 0.5 seconds. This means that the robot will be updated twice per second in the robot display area.

When the robot surrogate is started the first function that is executed is the create_window function. This function draws the window to the screen. It will draw the robot surrogate at 800 x 600 so the user’s screen resolution must be at least 800 x 600. At the end of the create_window function there is a function call that sets the addresses of the robot area and the location and speed list. These variables are set in the callbacks source file. Whenever an event happens (program starts, click the mouse, move the mouse, etc.) a function is called that makes the robot area background black and redraws the robot in the current location. This is done so when the program begins the robot appears in the center of the screen or if the user resizes the screen the robot will be redrawn correctly and won’t disfigure the robot area.

A separate thread was created that constantly calls the function draw_robot. Draw_robot is the function that creates the robot in the correct place and prints to the location and speed list the x and y coordinates and the speed of the robot that the user has input. Since the speed on the controller is accomplished by speed up and slow down buttons, this is the only way the user will know what the actual speed of the robot is. The draw_robot function uses many variables, some global and some local. The variables that are input by the user are all global variables. These variables are speed, orientation, and xsize. The draw_robot function goes through many different steps and they are as follows:

· The size is set for the vertical distance using the horizontal size, which is an input from the user, and the formula for the vertical distance is xsize*1.6
· A small drawing area is created for the representation of the robot

· The representation of the robot is created in the drawing area based on the orientation that was given from the user

· The new location for the robot is calculated by the formula s=so + vot
· Based on the new location, it is determined whether or not the location is in the boundaries that were set by the user. If they are, the robot will be drawn in the new location. If the new location is outside of the boundaries that were set the robot will be drawn at the edge of the boundaries. A message telling the user that the robot went too far in the x or y direction will appear in the location and speed list (as seen in the figure below).

· The robot is drawn in the correct location inside the robot area and the coordinates and speed are displayed in the location and speed list.

[image: image2.png]Robot Area

Location and Speed

The coordinates are (150.000000, 0.000000) and speed = 10.000001
You went too far in the x direction

= 1

Exit Clear fist

A message telling the user that they went too far is being displayed in the location and speed list

The location and speed are also being displayed from the draw robot function. After the robot is displayed, the coordinates are copied into a command that displays them into the location and speed list. The new coordinates are always put at the top of the list. The coordinates could have been displayed at the top or the bottom of the list. GTK does not automatically scroll the window down when a the list becomes too large so it is easier for the user to see the new location and speed if they are displayed at the top of the list.

The robot surrogate accepts three inputs from the robot controller. The first input that will be accepted is speed. Speed is a global variable so whenever the new speed in input, it is changed in the draw_robot function and the robot will change its speed accordingly. Another input that the robot surrogate accepts is orientation. This is the direction the robot is facing. When the orientation is input it is converted to be between 0 and 360 by the formula orientation mod 360. The draw_robot function converts the orientation from degrees to radians by the formula radians=2*(*degrees/360. The reason for converting the orientation into radians is that cos(x) and sin(x) assumes x to be measured in radians and would produce false output if x was measured in degrees. The final input for the robot surrogate is a check status request. When the robot surrogate receives the check status command it will send back the following:

· speed

· orientation

· x location

· y location

A check status request is sent every time another command is sent. If there is a change speed command sent, the robot surrogate sends the values of the variables listed above back to the robot controller before executing the drawing of the robot. If the robot is currently at the point (15,10) and a change speed to 100 units/sec is sent to the robot surrogate, the robot will move but the x and y location sent back to the controller is (15,10). When the robot is stopped, the new coordinates will be sent back to the robot controller.

The robot surrogate consists of four source files, some of which have been previously discussed. They are main, interface, callbacks, and support. Main calls the create_window function, which is in interface. Interface creates the window and creates and handles the signals for the exit button, clear button, expose event, and configure event. Those signals are defined in callbacks.c. Callbacks.c is the source file that contains draw_robot, which was described above, and handles all the events for the robot surrogate except creating the initial window. Support is the source file that handles pixmap errors. Support was created was created by Glade when the GUI was created. The support files main purpose is to check to see that pixmaps are created when they are supposed to be displayed. If a pixmap is called that does not exist, the support source file creates a dummy pixmap so the program does not crash.

Robot API

Overview:

The root of the API is sending robot commands between the computers through the internet. We have a client – server relationship architecture of the system, and the system is designed to support 7 separate processes connected together. The server process is the one all other processes need to connect to. The first client to connect, is considered a main connection. After the main connection occurs, the network starts sending data back and forth, and continues to wait for additional computer to connect to the system. Up to 5 secondary connections can be established.

There are currently 8 different robot commands supported by the system. The server is the robot controlling station. There can be only 1 robot controller, but there can be many robots controlled by that same controller. Each command that is sent out to the robot, is sent out in an identical fashion immediately to all the active connections. There can be many different types of robots connected, and computers emulating the actions of robots. The robots then do the requested actions, and can return their status back to the server.

There are also many secondary systems in action in the RobotAPI. We created a safety system that commands the robot to stop should the connection to the robot be lost. We created a simple configuration file that contains many of settings that change frequently enough, that you don’t want to recompile the code to change, but you don’t want to manually input the settings either.

Network:

Our special client – server relationship was set up the way it is for several reasons. A lot of things changed along the way and the requirements changed of the system, so the architecture has constantly been fine-tuned. The most obvious decision of the architecture was the client – server for us. We only had access to one robot, so there was no point in having a complex architecture capable of handling multiple controllers and multiple robots. This naturally led us to a client – server architecture because it’s very efficient and easy to implement.

There is a differentiation between main and secondary clients because the server needs to feel it is communicating 1 on 1 with the main client. The server and main connection have 2-way communication, while the secondary clients are not able to send any data back to the server. It would only complicate things if different clients were sending back conflicting status to the server.

The communication between processes consists of sending robot command objects through TCP/IP sockets. The robot command is setup like a C structure. There are generic fields for stuff like the command name, integers, a list of points, and XY coordinates. Care was taken not to pass any pointers. A valid pointer on one machine will never point to anything useful on a different machine. We tried to have an inheritance relationship between different classes of robot commands, but we were never able to implement it properly.

When a command is sent over the network, there are 3 different pieces of data that are sent. The first thing sent over the network is an instruction code unique to that type of command. Second, the size of the incoming robot command is sent over, so the receiving side knows how much to try and receive. Thirdly, the robot command is sent over.

Safety Measures:

We developed our system using a rather poor wireless ethernet waypoint. It was a rather inexpensive unit, but it couldn’t receive commands at even 100’ away. We were very concerned about the robot traveling outside of the wireless ethernet range, and losing its connection. We wanted to send any robot commands on demand, and not have them sent at a periodic interval. A periodic interval of some sort would have created an easier way for us to detect a lost connection.

We compromised by having a null command sent at periodic intervals, and all regular commands sent on demand. When a client fails to receive it’s regular null commands, you can detect that the connection is lost. You don’t have any lag when you send commands, plus you get the benefit of a safe robot.

This sounded good in theory, but we took a huge performance hit. Our timed delays to create the null commands created a lot of problems. Our wait function is extremely inefficient, and was only noticed during integration. The serial port was unable to send data fast enough for the robot. We finally removed the safety measures from our program, and just decided to stay within a safe range of the wireless ethernet receiver.

The safety measures are still present in the program, but the function calls to start them have been commented out. If a suitable wait function was created, the safety measures could be put back. They have already been tested, and although the performance was bad, the safety measures work well.

Robot Commands:

	Instruction code
	Command name
	Description

	A
	CHANGE_ORIENTATION
	Tells the robot to face the specified heading.

	B
	CHANGE_SPEED
	Tells the robot to move in the direction it’s facing at a new speed. Reverse is accomplished by using a negative speed.

	C
	GOTO_XY
	Tells the robot to go to the specified point.

	D
	FOLLOW_PATH
	Tells the robot to go to a series of points that are stored in a list.

	E
	STATUS_CHECK
	Tells the robot to send a CURRENT_STATUS command back.

	F
	CURRENT_STATUS
	This command comes from the robot to the server, and informs the server of the robot’s status and location.

	G
	STEER_MOTOR
	Tells the robot to steer the front wheel at the specified speed.

	Y
	NULL_COMMAND
	Lets the robot know its network connection is still working.

Threads:

The program has many threads to allow it to process many different things in parallel. Here is a summary of the different threads, and how many of them possibly exits.

	Thread function
	Quantity
	Description

	Main
	1 (never expires)
	The main function.

	ListenForData
	1 (expires)
	Listens for the main connection to connect.

	WaitForNewConnections
	1 (expires)
	Waits for each of the 5 possible secondary connections. Expires when all 5 have been used.

	SendNullCommand
	1 (never expires)
	Sends the null commands to each of the client connections as part of the safety measures. Very processor intensive in our version.

	SafetyOverride
	1 (never expires)
	Detects when the connection has been idle for too long and stops the robot. Very processor intensive in our version.

	ListenOnSecondaryConnection
	Up to 5
	Essentially the listenForData function for the secondary connections. 1 is created for every secondary connection.

With over 5 threads capable of trying to send data over the network, timing became critical and we ran into some segmentation faults because of it. What happened was that the server would have 2 threads sending data at the same time. Take the following sequence for example:

· Thread1 sends IC = A

· Thread2 sends IC = B

· Thread1 sends size = 2

· Thread2 sends size = 6

· Thread1 sends robot command

· Thread2 sends robot command

That data will be read in the following manner:

· Read IC = A

· Read size = (IC = B)

· Read robot command = (size 2)

· Read IC = (6)

· Read size = (robot command)

· Read robot command = robot command

I used a counting semaphore to finally resolve this critical section problem. It was an interesting problem to me, because it was the server that had the error, but the client was crashing.

